If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10x^2+2x-6=0
a = 10; b = 2; c = -6;
Δ = b2-4ac
Δ = 22-4·10·(-6)
Δ = 244
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{244}=\sqrt{4*61}=\sqrt{4}*\sqrt{61}=2\sqrt{61}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{61}}{2*10}=\frac{-2-2\sqrt{61}}{20} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{61}}{2*10}=\frac{-2+2\sqrt{61}}{20} $
| (v/2)=32 | | 8y-30=2y+30 | | m2+3m=0 | | (1/2)x+4=2(x−5) | | (7x-11)°=180 | | 50=40.6301+0.1662x | | 3x-8=(2x+2) | | 3-2(9+2m)=2 | | 2x-6+7x+6=180 | | 27+n=40 | | 5*28=s | | 1720=120+y | | (5*28)+20=d | | 4x+6/6=12−3x | | 5=x-36 | | 12n=-132 | | 3w-17=19 | | (7u)^2=0 | | 30+x=93 | | 7x−5x=14 | | w/5+13=42 | | 6x-11+11x+21=180 | | 4^7x=64 | | 6*20=f | | (5x-3)(x+7)=0 | | X+0,5x=75 | | X+1/2x=75 | | -3(x-14)=14 | | X³-10x=100 | | 150=x+120 | | 9*12+17=a | | Q=-2/3p+6 |